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This Rapid Communication is about a procedure for the statistical uncertainty estimation of velocity struc-
ture functions measured in turbulent flows. The proposed method is based on the determination of the number
of statistically independent samples calculated by the correlation function of the velocity increments and it is
applied to experimental data obtained by hot wire measurements in a turbulent jet flow.
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The most common approach for the statistical study of
locally isotropic turbulent flows, is based on the analysis of
the velocity increments field~see, for example,@1#! and, in
particular, of thep-order velocity structure function that can
be defined as follows:

^DV~t!p&5^@V~t1t !2V~ t !#p&, ~1!

where the symbol̂ & represents the average over an appro-
priate ensemble. In the last few decades, great efforts have
been made by experimentalists in order to measure with suf-
ficient accuracy the statistical quantities of Eq.~1!, and to
obtain reliable data for comparing the results with available
theories, mainly with those concerning the scaling properties
of the velocity structure functions~see, e.g.,@2# for a re-
view!. Huge amounts of data have been acquired, mostly by
the hot wire anemometry technique, but the correct estima-
tion of the statistical errors remains today an important and
still debated task~see, e.g.,@3–6#!.

It is well known from statistical theories that the statistical
accuracy increases for increasing number of acquired
samples. The general definition of the error related to the
statistical uncertainty, and in particular to the lack of
ergodicity due to finite length of the time acquisition win-
dow, can be given in fact by the following expression, which
is valid for stationary statistics:

ep~t!5F ^DV~t!2p&

^DV~t!p&2
21G1/2 1

Nind
1/2 . ~2!

Strictly speaking Eq.~2! is valid if the central limit theorem
can be applied; that is, if the correlation function decays
much faster than 1/t. This is not the case for turbulence@7# at
small t. Nevertheless, correlation functions go to zero after a
certain amount of time. This allows us to use Eq.~2! also for
turbulent data ifNind is correctly estimated. The difference
betweenep evaluated using independent data records, and
ep , estimated through Eq.~2! with Nind computed following

the procedure proposed in this paper, is negligible. Indeed, if
Eq. ~2! is used, the estimation ofep , depends not only on the
number of samples acquired, but also on the correct evalua-
tion of the number of statistically independent samples,
Nind . This aspect has been well focused on in@8# ~§ 6.4! and
@9#. These authors suggest that a correct estimation of the
distance between two successive independent samples
should be of the order of twice the integral length. Other
authors consider statistically independent samples by choos-
ing the sampling interval of the order of the Taylor micro-
scale~see, e.g.,@10#!. Other approaches were proposed, e.g.,
by Anselmetet al. @11#. Unfortunately, the proposed proce-
dures do not give univocal methods for the estimation of
Nind , and, most important, a correct definition ofNind(t),
i.e., as a function of the turbulenteddiessize, is not given.
Furthermore, it is well known that intermittency yields non-
Gaussian statistics of the velocity increments at small sepa-
rations~see, e.g.,@12#!. Thus the definition ofNind should be
modified to account for the different statistics observed at
different scales. The procedure we propose is a modification
of Tennekes and Lumley,@8# approach for the estimation of
Nind . Our aim is to evaluate the number of samples that are
correlated at each scalet that is for each characteristic tem-
poral separation of the velocity increments. The distance be-
tween two successive samples is determined by the sampling
rate adopted for data acquisition whereas two successive sta-
tistically independent samples should be separated by a dis-
tance larger than their correlation length. Therefore, in order
to evaluate the number of correlated samples at eacht, we
compute the correlation function of the velocity increments,
as follows:

C~d,t!5 lim
T→`

1

TE0
T
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3@V~ t1t!2V~ t !#dt, ~3!

whered represents the correlation time andt the velocity
scale. At eacht it is possible to calculate the characteristic
correlation time scaleTD(t) as follows:

TD~t!5
*0

`duC~d,t!udd

*0
`uC~d,t!udd

, ~4!
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and the number of statistically independent samples will be
also a function oft, sinceNind(t)5@Ttot /TD(t)#. At each
scalet the ratioTD /Dt, whereDt is the sampling interval,
gives the number of samples which are assumed to be cor-
related and therefore not independent from the statistical
point of view. OnceNind(t) is determined, Eq.~2! is used to
compute properly the statistical errorep(t). As indicated in
Eq. ~2! the valueNind is not dependent on the moment order
p. This is obviously related to the possibility of calculating
the p-order moments directly from the probability distribu-
tion functions~PDFs! of DV and not from the ensemble av-
erage ofDVp. This point has been checked by the estimation
of the correlation of orderp of the velocity differences, i.e.,
by usingDVp in Eq. ~3!. We found that the larger the mo-
ment orderp, the shorter the correlation time. Thus, one will
arrive at the conclusion that the number of independent
samples increases with the moments orderp, which is physi-
cally incorrect. Therefore the numberNind calculated from
Eq. ~3! gives the correct estimation of the statistically inde-
pendent samples, whereas the dependence fromp is ac-
counted for when estimating the error from Eq.~2!.

Experimental measurements are conducted in a turbulent
flow generated by a jet. Data are acquired by means of a
single probe hot wire anemometer~probe TSI 1260 of length
l w5500 mm). The jet diameterD is 12 cm and the probe is
positioned in the fully developed region atx/D.25. The
mean velocity isŪ58.4 m/sec and Rel ~based on the Tay-
lor microscalel and on the velocity standard deviation! is on
the order of 800. 1.63107 samples have been acquired with
sampling interval corresponding to about 5 Kolmogorov
length that is on the order of the probe size. The anemometer
signal is properly filtered to avoid aliasing errors and it is
digitized by a 16 bit analog-to-digital converter. The error
given by Eq.~2! is then calculated for structure functions of
order from 1 to 6 and for different amounts of samples~from
106 to 1.63107).

The correlation functionC(d,t) is computed as a func-
tion of dr5Ūd and for different separationst r5Ūt. In Fig.
1, C(d,t)/C(0,t) calculated at smallt r is presented. Each

curve corresponds to differentt r , which ranges from 5 up to
250h. The abscissas corresponding to negative-slope zero-
crossings have been checked to be reliable indicators of
ŪTD(t)/h that are the normalized correlation lengths. For
example, at the smallestt r ~that corresponds to a separation
equal to the sampling interval!, we found a positive correla-
tion function for about the first seven samples that corre-
sponds to a length scale on the order of the Taylor micro-
scale. Therefore, at this scale, the number of statistically in-
dependent samples isNtot/7.2.43106. Results analogous to
those of Fig. 1 are obtained at larger scales~not reported
here! and, as in the previous case, the correlation length in-
creases for increasing separationst r . In Fig. 2 we present the
correlation lengthTD as a function oft r . Apart from the
smallest separations, the increase ofTD with t follows a
power law with exponent;1. In order to better analyze the
dependence ofTD over t we tried to determine a self-
preserving form of C(d,t). In Fig. 3 we show
Ca(d,t)/Ca(0,t) as a function of the normalized separation
d/t. The correlation functionCa(d,t) is calculated as shown

FIG. 1. Correlation functionC(d,t), evaluated at small scales
dr5Ūd. Each curve is plotted for fixedt r , which ranges from 5
~first curve on the left! to 250h.

FIG. 2. Log-log plot ofTD as a function oft r5Ūt.

FIG. 3. Self-preservation ofCa(d,t). o corresponds to
t r;100h, * to t r;200h, and1 to t r;400h

54 R3099STATISTICAL UNCERTAINTY IN THE ANALYSIS OF . . .



in Eq. ~3! but with the use of the modulus of the velocity
differences. The similarity of the curves is achieved with
good accuracy over the whole range ofd/t and for different
values oft ~which, also in this case, correspond to different
curves!. This result suggests that the correlation function can
be written in the following form:

Ca~d,t!/Ca~0,t!5 f ~d/t!, ~5!

where f (d/t) is a universalfunction whose analytical form
is presently under study by the authors@7#. It is important to
notice that a necessary condition for Eq.~5! to be used, is
thatdr andt r belong both to the inertial or to the dissipative
range of scales.

The errorep defined in Eq.~2! is shown in Fig. 4 forp
ranging from 2 to 6 as a function of the normalized spatial
separationt r /h. It has to be pointed out that the error calcu-
lated forp56, which is around 5%, is on the order of pre-
vious results~e.g., @6#! only if its averaged value~over the
whole range of scales! is considered. As expected, the error
increases withp due to the decreasing reliability of the
PDFs. In fact, ifP(DV) is the PDF of the velocity differ-
ence, reliable results are obtained if, for anyp, the number of
statistically independent samples is large enough to permit
the proper calculation of thep-order moments of the velocity
difference, which are defined as follows:

^DVp&5E
0

`

P~DV!DVpd~DV!. ~6!

The largerp is the shorter the range whereP(DV)DVp can
be correctly integrated. In order to obtain better reliability,
the statistical error of odd order moments is computed by
averaging the absolute values of the velocity differences. We
checked that the use of the modulus increases the accuracy of
a factor>2, however, as shown in Fig. 4, even order mo-
ments are more precise than the odd ones even when the
latter are calculated with the use of the absolute value. For
smallp (p,6), the error increases for increasing separations
t r . This is related to the increase in magnitude ofTD and the
consequent decrease ofNind . Nevertheless, forp56,

ep(t r /h) remains about constant apart from the largest
scales. This trend is related to the shape of the PDFs of the
velocity differences, that, at the smallest scales, becomes ex-
ponential~see, e.g.,@12#!. Therefore, for highp and small
scales, the error evaluated at smallt r becomes higher be-
cause, as follows from Eq.~6!, the PDFs tails are not cor-
rectly resolved. Same conclusions can be achieved from Fig.
5, whereep is plotted for p52 and increasing amount of
data. In this case we observed, for fixedt r , a decrease of
ep for increasing number of samples. At the largest scales,
ep decreases asNtot

21/2 This is the expected trend since
Gaussian statistics are the appropriate for large scales. At the
smallest scales the decrease ofe2 with Ntot is instead faster
with a decay exponent close to21. This is due to the statis-
tics of the small scales that are closer to being exponential
than to being Gaussian@13#. These results are evidence that
the dependence ofep over theeddy scalest, significantly
affects the uncertainty estimation. Therefore, since such de-
pendence is not trivial, it should always be taken into ac-
count for a correct evaluation of the error bars of the velocity
structure functions.

As a conclusion, a procedure for the evaluation of error
bars related to statistical uncertainties is presented. Attention
is focused on the velocity structure functions, and statistical
errors are computed by the estimation of the number of sta-
tistically independent samples obtained by the correlation
function of the velocity increments. The proposed procedure
is applied to velocity data acquired in a turbulent jet flow. A
self-preserving behavior of the correlation function has been
observed, and error bars, for structure functions ranging from
the second to the sixth order, have been calculated. The de-
pendence of the statistical error over the length scales has
been evidenced and it has been related to the different statis-
tics observed for increasing separations. Finally, we point
out that in our data the errors related to the measurement
technique~hot wire measures! are negligible with respect to
the statistical uncertainty~see, e.g.,@14#!. Of course, if mea-
surement errors are instead significant, they have to be added
to the statistical errors.

We thank G. Stolovitzky for very useful comments which
improved the paper a lot. This work has been partially sup-
ported by the EEC Contract No. ERBCHRXCT940546.

FIG. 4. Statistical error calculated forp from 2 to 6.
FIG. 5. Statistical error calculated forp52 and increasing data

samples.
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