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Statistical uncertainty in the analysis of structure functions in turbulence
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This Rapid Communication is about a procedure for the statistical uncertainty estimation of velocity struc-
ture functions measured in turbulent flows. The proposed method is based on the determination of the number
of statistically independent samples calculated by the correlation function of the velocity increments and it is
applied to experimental data obtained by hot wire measurements in a turbulent jet flow.
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The most common approach for the statistical study othe procedure proposed in this paper, is negligible. Indeed, if
locally isotropic turbulent flows, is based on the analysis ofEq. (2) is used, the estimation ef,, depends not only on the
the velocity increments fielgsee, for examplg,1]) and, in  number of samples acquired, but also on the correct evalua-
particular, of thep-order velocity structure function that can tion of the number of statistically independent samples,

be defined as follows: Ning- This aspect has been well focused ofigh(§ 6.4 and
[9]. These authors suggest that a correct estimation of the
(AV()P)=([V(m+1)—V(1)]), (1) distance between two successive independent samples

should be of the order of twice the integral length. Other

where the symbo{ ) represents the average over an approquthors consider statistically independent samples by choos-
priate ensemble. In the last few decades, great efforts havfg the sampling interval of the order of the Taylor micro-
been made by experimentalists in order to measure with sukcale(see, e.g.[10]). Other approaches were proposed, e.g.,
ficient accuracy the statistical quantities of Efj), and to  py Anselmetet al. [11]. Unfortunately, the proposed proce-
obtain reliable data for comparing the results with availablejures do not give univocal methods for the estimation of
theories, mainly with those concerning the scaling propertiemmd' and, most important, a correct definition Nf,4(7),
of the velocity structure functionésee, e.g.[2] for a re- e, as a function of the turbulertddiessize, is not given.
view). Huge amounts of data have been acquired, mostly by:yrthermore, it is well known that intermittency yields non-
the hot wire anemometry technique, but the correct estimagaussian statistics of the velocity increments at small sepa-
tio_n of the statistical errors remains today an important a”q‘ations(see, e.g[12]). Thus the definition oN;,4 should be
still debated tasKsee, e.g.[3-6)). modified to account for the different statistics observed at

It is well known from statistical theories that the statistical gifferent scales. The procedure we propose is a modification
accuracy increases for increasing number of acquiregf Tennekes and Lumley8] approach for the estimation of
samples. The general definition of the error related to they, .= Our aim is to evaluate the number of samples that are
statistical uncertainty, and in particular to the lack of correlated at each scatethat is for each characteristic tem-
ergodicity due to finite length of the time acquisition win- nora| separation of the velocity increments. The distance be-
dow, can be given in fact by the following expression, whichtween two successive samples is determined by the sampling
is valid for stationary statistics: rate adopted for data acquisition whereas two successive sta-
tistically independent samples should be separated by a dis-

2 1/2
¢ (T):[MV( ) _ 1 ) tance larger than their correlation length. Therefore, in order
P (AV(1)P)? Nma to evaluate the number of correlated samples at eache

compute the correlation function of the velocity increments,

Strictly speaking Eq(2) is valid if the central limit theorem as follows:

can be applied; that is, if the correlation function decays

much faster than 1/ This is not the case for turbulenfg] at 10T

smallt. Nevertheless, correlation functions go to zero after a C(48,7)=lim —f [V(t+ 7+ 8)—V(t+ )]

certain amount of time. This allows us to use E?).also for T TJo

turbulent data ifN;,q is correctly estimated. The difference

betweene, evaluated using independent data records, and X[V(t+7)—-Vv(H]dt, )

€p, estimated through E@2) with N;,4 computed following
where § represents the correlation time amdthe velocity
scale. At eachr it is possible to calculate the characteristic
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FIG. 1. Correlation functiorC(4J,7), evaluated at small scales

dr:U6. Each curve is plotted for ﬁXed, which ranges from 5 FIG. 2. Log_|og p|ot OfTA as a function Otr:UT.
(first curve on the lejtto 250z.

curve corresponds to differept, which ranges from 5 up to

and the number of statistically independent samples will b507,. The abscissas corresponding to negative-slope zero-
also a function ofr, sinceN;,q(7) =[Tot/Ta(7)]. At each  crossings have been checked to be reliable indicators of
scaler the ratioT, /At, whereAt is the sampling interval, UT,(7)/# that are the normalized correlation lengths. For
gives the number of samples which are assumed to be coexample, at the smallest (that corresponds to a separation
related and therefore not independent from the statisticatqual to the sampling interyalwe found a positive correla-
point of view. OnceN;,q(7) is determined, Eq.2) is used to  tion function for about the first seven samples that corre-
compute properly the statistical erreg(7). As indicated in  sponds to a length scale on the order of the Taylor micro-
Eq. (2) the valueN;,q is not dependent on the moment order scale. Therefore, at this scale, the number of statistically in-
p. This is obviously related to the possibility of calculating dependent samples i,,/7=2.4x 10°. Results analogous to
the p-order moments directly from the probability distribu- those of Fig. 1 are obtained at larger scalest reported
tion functions(PDF9 of AV and not from the ensemble av- here and, as in the previous case, the correlation length in-
erage ofAVP. This point has been checked by the estimationcreases for increasing separationsin Fig. 2 we present the
of the correlation of ordep of the velocity differences, i.e., correlation lengthT, as a function oft,. Apart from the
by usingAVP in Eqg. (3). We found that the larger the mo- smallest separations, the increaseTaf with 7 follows a
ment ordeip, the shorter the correlation time. Thus, one will power law with exponent-1. In order to better analyze the
arrive at the conclusion that the number of independendependence off, over = we tried to determine a self-
samples increases with the moments omlewnhich is physi- preserving form of C(6,7). In Fig. 3 we show
cally incorrect. Therefore the numbaét, 4 calculated from C,(68,7)/C,(0,7) as a function of the normalized separation
Eq. (3) gives the correct estimation of the statistically inde- &/ 7. The correlation functiol€,( 8, 7) is calculated as shown
pendent samples, whereas the dependence fioim ac-
counted for when estimating the error from E8g).

Experimental measurements are conducted in a turbulent
flow generated by a jet. Data are acquired by means of a
single probe hot wire anemomefg@robe TSI 1260 of length _
l,=500 wm). The jet diameteD is 12 cm and the probe is osf 1
positioned in the fully developed region atD=25. The }
mean velocity i9J=8.4 m/sec and Re(based on the Tay-
lor microscalexn and on the velocity standard deviatjas on
the order of 800. 1.8 10" samples have been acquired with
sampling interval corresponding to about 5 Kolmogorov
length that is on the order of the probe size. The anemometer
signal is properly filtered to avoid aliasing errors and it is
digitized by a 16 bit analog-to-digital converter. The error
given by Eq.(2) is then calculated for structure functions of
order from 1 to 6 and for different amounts of sampliesm 08
10° to 1.6x 10).

The correlation functiorC(é, ) is computed as a func-
tion of d,=U ¢ and for different separatiortg=U 7. In Fig. FIG. 3. Self-preservation ofC,(8,7). o corresponds to
1, C(6,7)/C(0,7) calculated at small, is presented. Each t,~100z, * to t,~2007, and+ to t,~400y
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FIG. 5. Statistical error calculated fpr=2 and increasing data
FIG. 4. Statistical error calculated forfrom 2 to 6. samples.

€p(t;/m) remains about constant apart from the largest

) S X . -~ scales. This trend is related to the shape of the PDFs of the
differences. The similarity of the curves is achieved Wlthvelocity differences, that, at the smallest scales, becomes ex-

good accuracy over the whole range&fr and for different ponential (see, e.g.[12]). Therefore, for highp and small
values of7 (which, also in this case, correspond to differentscmes the er,ror evaluated at sméllbecomes higher be-
curves. This result suggests that the correlation function Carbause’ as follows from Eq6), the PDFs tails are not cor-

in Eq. (3) but with the use of the modulus of the velocity

be written in the following form: rectly resolved. Same conclusions can be achieved from Fig.
5, wheree, is plotted forp=2 and increasing amount of
Ca(8,7)C4(0,7)=1(6l7), (®)  data. In this case we observed, for fixed a decrease of

€p for increasing number of samples. At the largest scales,

wheref(6/7) is auniversalfunction whose analytical form e, decreases aNt_o%/Z This is the expected trend since

is presently under study by the authgrs. It is importantto  G5yssjan statistics are the appropriate for large scales. At the
notice that a necessary condition for E§) to be used, is  gmallest scales the decreaseegfwith N, is instead faster
thatd, andt, belong both to the inertial or to the dissipative yjth a decay exponent close tel. This is due to the statis-
range of scales. tics of the small scales that are closer to being exponential
The errore, defined in Eq.(2) is shown in Fig. 4 fop  than to being Gaussidi3]. These results are evidence that
ranging from 2 to 6 as a function of the normalized spatialthe dependence aof, over theeddy scalesr, significantly
separatiort, / n. It has to be pointed out that the error calcu- affects the uncertainty estimation. Therefore, since such de-
lated forp=6, which is around 5%, is on the order of pre- pendence is not trivial, it should always be taken into ac-
vious results(e.g.,[6]) only if its averaged valug¢over the  count for a correct evaluation of the error bars of the velocity
whole range of scalgss considered. As expected, the error structure functions.
increases withp due to the decreasing reliability of the  As a conclusion, a procedure for the evaluation of error
PDFs. In fact, ifP(AV) is the PDF of the velocity differ- bars related to statistical uncertainties is presented. Attention
ence, reliable results are obtained if, for gnythe number of  is focused on the velocity structure functions, and statistical
statistically independent samples is large enough to permgrrors are computed by the estimation of the number of sta-
the proper calculation of the-order moments of the velocity tistically independent samples obtained by the correlation
difference, which are defined as follows: function of the velocity increments. The proposed procedure
is applied to velocity data acquired in a turbulent jet flow. A
o self-preserving behavior of the correlation function has been

(AVP)= Jo P(AV)AVPd(AV). (6)  observed, and error bars, for structure functions ranging from
the second to the sixth order, have been calculated. The de-
pendence of the statistical error over the length scales has
been evidenced and it has been related to the different statis-
ics observed for increasing separations. Finally, we point

the statistical error of odd order moments is computed b ut that in our data the errors related to the measurement
averaging the absolute values of the velocity differences. Wi : . o .
]chmque(hot wire measuregsare negligible with respect to

checked that the use of the modulus increases the accuracy o~ ; X
a factor=2, however, as shown in Fig. 4, even order mo-tﬁe statistical uncertaintisee, e.g.[14]). Of course, if mea-

ments are more precise than the odd ones even when tﬁgrement errors are instead significant, they have to be added

latter are calculated with the use of the absolute value. Fotr0 the statistical errors.

smallp (p<6), the error increases for increasing separations We thank G. Stolovitzky for very useful comments which
t,. This is related to the increase in magnitudé@fand the  improved the paper a lot. This work has been partially sup-
consequent decrease df;,q. Nevertheless, forp=6, ported by the EEC Contract No. ERBCHRXCT940546.

The largerp is the shorter the range wheR{AV)AVP can
be correctly integrated. In order to obtain better reliability,
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